Pharmacological effects of extracts from Mentha Iongifolia L. Huds

Dr. Luay Y. Al-Essa, Dr. Muna A.M. Hasan, Dr. Ibrahim M. Abu-Al-Futuh, Dr. Raya M. Jamil, Iyad A. Al-Sheikh and Dr. Mohammed C. Al-Noaemi

Faculty of Pharmacy, Al-Zaytoonah University

ABSTRACT

The pharmacological effects of volatile oil fraction, butanol and the residual water extracts of Mentha Iongifolia (L. Huds, family Lamiaceae) on intestinal smooth muscle were studied in vitro. Volatile oil fraction (40-100 µg/ml) exhibited an inhibitory effect on the acetylcholine-induced contraction of the rabbit ileum. This action was transient and reversible after washing the tissue. In addition, volatile oil fraction (40-100 µg/ml) inhibited the histamine-induced contraction of the ileum in guinea pig. Butanolic extract (100 µg/ml) exhibited weaker inhibitory effect on both acetylcholine- and histamine-induced contractions on rabbit and guinea pig ileums. Residual water extract (40-200 µg/ml) showed no effect. However, further investigations are still recommended.

ملخص
التآثرات الدوائية لمستخلصات نبتة النعنع البري

أجريت دراسة التأثير الدوائي لخلاصة نبات النعناع على العضلات In Vitro. أوضحنا النتائج أن الزيت الطيار 40/100 ميكروغرام/مل للنباتات له تأثير تشبيطي على تقلص اللوفاتي للأنفيب الناتج من فحال الاستيتيك غكولين. إن هذا التأثير هو مؤقت وبينته فعلا بعد غسل النسيج وإزالة الزيت الطيار. إن خلاصة الزيت الطيار 40/100 ميكروغرام/مل قد شبت أيضا تقلص اللوفاتي لخلاصة غكولين الناتج من فعل الهيستامين. وقد أعطت خلاصة الزيت 100 ميكروغرام/مل المستخلصة بواسطة الببتيدنول نفس التأثير ولكن بشدة أقل على التقلص الناتج من فحال الاستيتيك غكولين والهستامين في لوفاتی الأذب وكثير غكولين. لم يظهر النتائج الماني للنباتات 40/200 ميكروغرام/مل أي تأثير. إن هذه التأثيرات تدعم الاستعمال الطبي الشعبي لنبات النعناع لعلاج الفص البطني والربو القصبي.

تاريخ قبول البحث: 2001/3/27
تاريخ تسلم البحث: 2000/5/17

- 95 -
Introduction

Mentha longifolia is a wild growing herb in Jordan. It is used in folkloric medicine for the treatment of intestinal and respiratory ailments like abdominal colic and asthma. Three main chemotypes of *M. longifolia* were reported in the literatures [1-4]. Gas chromatography and mass spectrometry analyses have indicated that the main chemical constituents in the aerial parts of the locally grown *M. longifolia* are piperitenone oxide and piperitone oxide in addition to discrete amounts of terpineol, limonene, 1,8-cineole, p-cymen-8-ol and isopiperitenone [5]. Extracts of *M. longifolia* were reported to be pharmacologically active as anticonvulsant, hypothermic [6] and central nervous system depressant in mice and rats [7]. In addition, extracts of *M. longifolia* exhibited antimicrobial activity [8, 9]. The aim of this work was to detect the pharmacological effects of extracts from the aerial parts of *M. longifolia* on smooth muscle *in vitro*.

Materials and methods:

Plant material:

The aerial parts of *M. longifolia* (L.) Huds, Lamiaceae, were collected, at the beginning of flowering, from Om Al-Basateen area in Amman, at an altitude of approximately 790-830 m. The plant was identified by Prof. D. Al-Esawi (University of Jordan).

The plant is a long-leafed type of mint, which attains a height of more than 70 cm, and may exceed 1 m in height. It has an erect grooved square stem. The stem gives branches from its upper part. Leaves are sessile (auriculate) with an opposite decussate arrangement. Other macroscopic characters are typical of the genus *Mentha*. The microscopic characters are typical to peppermint species, i.e. uniseriate covering trichomes up to 8 cells. The glandular trichomes are of 2 types, labiaceous and unicellular head unicellular stalk glandular trichomes. Stomata are of the diacytic type. However,
both covering trichomes and unicellular head glandular trichomes are very abundant.

Plant extracts:

The volatile oil fraction and butanolic extract of *M. longifolia* were prepared according to the following methods.

Volatile oil fraction:

The aerial parts of the fresh plant were boiled in water (hydrodistillation) for 90 minutes by using Clevenger type glass apparatus to obtain the volatile oil. Then the oil subsequently was extracted from traces of water with diethyl ether and dried over anhydrous sodium sulphate. The oil was diluted to the required concentration (see Figures) by emulsification with distilled water using 1% tween 80.

Butanolic extract:

The aqueous residue left after hydrodistillation of the volatile oil was filtered. The filtrate was extracted with butanol. The butanolic extract was dried under vacuum at 50° C. The dry butanolic extract was reconstituted with distilled water to give the required concentration (see Figures). This fraction is referred to as butanolic extract.

Exhausted water extract:

The residual water left after butanol extraction was dried under vacuum at 50° C. The solid substance obtained was reconstituted in water to the concentrations used in the work. This fraction is referred to as exhausted water extract.
Effects of extracts on smooth muscles:

Experiments were conducted in vitro on isolated ileum. Rabbit (white, about 1 kg in weight) or guinea pig (400-500 g in weight) were used in the study respectively. For each individual experiment for acetylcholine and histamine, a segment of 2-3 cm long of the ileum was flushed by tyrode solution (NaCl 0.8%, KCl 0.02%, NaH2PO4 0.005%, NaHCO3 3.1% and glucose 0.1%). The segment was immediately transferred into oxygenated tyrode-containing organ bath at 37° C. The ileal segment was fixed at one end and connected to isotonic transducer, by a thread, at the other end. The isotonic transducer is connected to a physiogram (Harvard). The changes in the length of the ileal segment (due to contraction and relaxaton) in response to the test extracts were transferred to the transducer and then recorded in the physiogram. The ileal segment was stabilized in the organ bath, and tested to give similar contractions in response to repeated similar doses of the agonist (acetylcholine or histamine) before starting the experiment.

Statistics:

Results are presented as mean ± S.D. Analysis was done by using two tailed student’s test.

Results and discussion:
The effect of M. longifolia extracts on rabbit ileum:

Acetylcholine (55-7040 nmol) showed a sigmoid shape dose-response curve, which is typical for an agonist [10]. It is in correspondence with what has been reported [11]. Volatile oil fraction (40 and 100 μg/ml) caused a shifting of the acetylcholine dose-response curve to the right. A control of 1% solution of tween 80 was used. It exhibited no effect on the measured parameters. The effect of the volatile oil indicates that it contains antagonistic activity to acetylcholine. Acetylcholine could not achieve the same maximal
effect in the presence of the volatile oil extract. This type of the antagonistic effect is either due to the presence of irreversible antagonist to the muscarinic receptors or physiological antagonist to acetylcholine [10] (see Figure 1).

![Graph showing dose-dependent effect of acetylcholine](image)

Figure 1. Dose-dependent effect of acetylcholine (●) with 40 (■) and 100 µg/ml (O) of volatile oil extract of Mentha longifolia on rabbit ileum in vitro. Acetylcholine has been added 30 seconds after the extract. Each point represents the mean ± S.D.

* : Significant difference from acetylcholine alone at P<0.05.

Butanolic extract (100 µg/ml) induced, qualitatively, the same effect of the volatile oil fraction (100 µg/ml) while the butanolic extract was found to be less potent (inhibition of about 25% only of the maximal effect of acetylcholine). Exhausted water extract had no effect on the rabbit ileum in the tested concentrations of 40-200 µg/ml. It has been found that the main chemical constituent of the volatile oil is piperitenone oxide (83%) [5]. Chromatography has showed that butanolic extract contains mainly phenolic com-
pounds and saponins in addition to piperitenone oxide. Piperitenone oxide has not been detected in the exhausted water extract [12]. Piperitenone oxide has been reported to be active as smooth muscle relaxant [13]. The differential effect of volatile oil, butanolic and exhausted water extracts in our study could be attributed to the differences in the concentrations of piperitenone oxide in each extract.

The inhibitory effect of volatile oil fraction on the rabbit ileum was directly proportional with the incubation period (Figure 2). However, even after the maximal tested incubation period of 120 seconds complete recovery of the ileum from the inhibitory effect was achieved after washing the tissue. This indicates that the effect of the extract is reversible and not due to permanent damage or toxicity to the tissue.

![Percentage of Response](image)

*Figure 2. *Mentha* volatile oil extract incubation time-dependent effect on the inhibition of acetylcholine (1100 nmol) induced contraction of rabbit ileum. *P < 0.05.*

The effect of M. longifolia extracts on guinea pig ileum:

Histamine (55-7040 nmol) produced dose-dependent contraction of the
guinea pig ileum. The dose-response relationship was a sigmoid curve, typical for an agonist [10]. A similar effect of histamine, with comparable doses, has been reported by others [14, 15, 16]. The effect of volatile oil fraction on the histamine-induced contraction of smooth muscle was similar to, but more potent than, that on acetylcholine-induced contraction (Figure 3).

Figure 3. Dose-dependent effect of histamine (■) with 40 µg/ml (●) and 100 µg/ml (○) of volatile oil extract of Mentha longifolia on guinea pig ileum in vitro. Histamine has been added 30 seconds after the extract. Each point represents the mean ± S.D. *: Significant difference from histamine alone at P < 0.05.

The results indicated that the extracts of M. longifolia exhibited smooth muscle relaxation. The mechanism of action could not be explored during this study. The effects are due to physiological antagonism to both acetyl-
choline and histamine, which could be attributed to the effect of piperitenone oxide.
References
"Chemical composition of the essential oils of Mentha species
cultivated in Italy.". Sci Pharm, 63, 223-230.
"Intraspecies chemical variability of Mentha longifolia". Rastil., 16, 436-441.
"Essential oils of Mentha longifolia (L.) Huds and Thymus serpyllum
of Armenia".
Rastit. Resur., 24, 605-610.
"A piperitenone oxide chemotype of Mentha longifolia (L.) Huds.
Growing wild in Jordan".
"Evaluation of some pharmacodynamic effects of Mentha longifolia ex-
tracts".
Planta Medica, 59,691 - 692.
"CNS activity of Mentha longifolia and Mentha longifolia
essential oil in mice and rats".
Phytotherapy, 4, 232-234.
"Antibacterial effects of extracts from Mentha longifolia".
"Comparative studies on the essential oils of some Mentha
species".
McCraw-1-Hill Inc. Singapore.
"Preliminary screening of extracts from Mentha longisoria".
Proceeciings Of The First Medicinal Plants Conference, Applied Science University, Amman, Jordan, 77-81.
"Effects of piperitenone oxide on the intestinal smooth muscle of the guinea pig".
"Investigation on the gastroprotective and antidiarrhoeal properties of ternatin, a tetramethoxyflavone from Egletes Viscosa".
Planta Medica, 63, 146-149.
"Antispasmodic activity of Thymus vulgaris extract on the isolated guinea-pig trachea: Discrimination between drug and ethanol effect"
"Relaxant and antispasmodic actions of methylengenol on guinea-pig isolated ileum".
Planta Medica, 66, 408-411